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A discussion on cancer stem cells and their relationship to aging of an organism.
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Organism Aging and Cellular Senescence

Humans have observed for millennia that aging is primarily characterized by a loss of function in society,
special age-linked exemptions from societal responsibility have been typically reserved for individuals in

their seventh or eighth decade of life (Shahar 1993).

There are common clinical presentations of aging, easily observed, that indicate disruption of tissue
regeneration, chronic inflammation and neoplastic disease (Pettan-Brewer and Treuting 2011). With
age, wound healing in the skin slows, hair turns gray or is lost, skeletal muscle mass and strength
decrease, the ratio of cellular constituents in the blood is skewed, and there is a decline in neurogenesis
(Sharpless and DePinho 2007). By definition, "age-related diseases" display an age-dependency, with
increasing frequency as an organism ages, and peak incidence occurring in the later decades of life.
Common human age-related diseases include diabetes (Tollefsbol 1987; Franceschi, Bonafe et al. 2000;
Thunander, Petersson et al. 2008), atherosclerosis (Franceschi, Bonafe et al. 2000; Vasto, Candore et al.
2007), sarcopenia (Baumgartner, Koehler et al. 1998; von Haehling, Morley et al. 2010), osteoarthritis

(Ladislas 2000; Horton, Bennion et al. 2006) and cancer (SEER 2010; Howlader, Noone et al. 2012).

Figure 1 Favre-Racouchot syndrome. A 69 year-old man with unilateral
dermatoheliosis (Gordon and Brieva 2012). Dermatoheliosis (Favre—Racouchot
syndrome), occurs by ultraviolet A (UVA) rays penetrating the epidermis and upper
layers of dermis, and can result in thickening of the corneal layer and epidermis, as
well as destruction of elastic fibers (Patterson, Fox et al. 2004). UVA has also been
shown to induce substantial DNA mutations and direct toxicity, sometimes leading
to melanoma (Patterson, Fox et al. 2004).
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The phenotype of aging is characterized by the loss of the ability to maintain homeostasis of tissue
structure and function, and depends on the capability of the specific tissue cells to regenerate (reviewed

in Rando, Thomas A and Chang 2012).
Chronological vs Replicative Aging

All cells experience chronological aging, as a function of existing in time. Tissues composed of
continuously dividing cells, such as the bone marrow, intestine or skin, also experience replicative aging
with each passage through the cell cycle and the accompanying risk of genetic and epigenetic changes,
telomere shortening, and DNA damage (Wang, Jurk et al. 2009; Liu and Rando 2011).

High cellular turnover
High regenerative potential
-

- Low cellular turnover
High regenerative potential

*  Low cellular turnover
Low regenerative potential

-

Blood cells Liver Lung parenchyma
Mammary epithelium Small vasculature Brain Kidney
Gut epithelium Skeletal muscle Retina
) . Vascular endothelium Pancreas Heart
Epidermis Adrenal cortex Spinal cord

Figure 2 Tissue regeneration and cellular turnover rates by tissue type. The spectrum of tissue types and the
compartmental contribution of stem cells in maintaining self-renewal and homeostasis. (Rando, Thomas A. 2006)

The accumulation of somatic damage is considered a main cause of the aging process (Hasty, Campisi et
al. 2003) Cellular stress from reactive oxygen species, DNA damage, telomere shortening, and
deformation of the extracellular matrix have all been proposed as aspects, either causal or resultant, of

somatic damage associated with aging.
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Hayflick Limit and Replicative Senescence

All cells experience chronological aging, which is characterized by changes in membrane composition,
damage accumulation, or malformation, of key macromolecules resulting in structural and functional
changes (Stadtman 2001; Rando, Thomas A and Chang 2012). In the mid-twentieth century, it was
found that somatic cells in culture have an average maximum lifespan of ~50 population doublings, now
known as the Hayflick Limit (Hayflick and Moorhead 1961). Cells from different fetal tissues were sub-
cultivated for different lengths of time and number of passages, lung being the greatest, undergoing 55
passages over eight months, until they reached a point whereby the cells were viable and metabolically
active, but permanently removed from the cell cycle, described as " an expression of aging or

senescence at the cellular level” (Hayflick and Moorhead 1961).

SBELLTIVATIONS Figure 3 Fetal fibroblast culture growth curve. Three
o 10 40 an phases of human fibroblast proliferation in culture are:
» phase |, establishment of the culture, a period of little
S Call ire . . . . .
S proliferation; phase Il, rapid cell proliferation; and
—

phase lll, proliferation declines and stops. At any point,
i immortalization can occur. (Hayflick and Moorhead
1961)
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The "end replication problem" of DNA synthesis (as part of the mitotic process), proposed by Olovnikov
in the early 1970s, provides an explanation for the Hayflick Limit by suggesting that the binding
properties of the DNA polymerase force the loss of DNA telomeric regions with each passage through
the cell cycle (Olovnikov, A. M. 1973; Olovnikov, Alexey M. 1996). Olovnikov also predicted the

existence of an enzyme that would synthesize and replace the telomeric caps, anticipated to be found in
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germ line cells, and cancer cells (Olovnikov, Alexey M. 1996). In the late 1970s, Elizabeth Blackburn and
Jack Gall identified the telomere-shortening mechanism, and later described the structure of telomeres,
which appears to set a fixed number of divisions, and hence the lifespan of cells (Allsopp, Vaziri et al.
1992; Cech 2000), and the enzyme telomerase that synthesizes and rebuilds telomeric caps (Blackburn,
E H and Szostak 1984; Blackburn, Elizabeth H. 1991). Subsequently, telomerase was found in most stem

cell and cancer cell populations (Thomson, Itskovitz-Eldor et al. 1998; Maser and DePinho 2002).

Cell Cycle Mechanics

After receiving a mitogenic signal, cells enter the G1 phase where initiation and progression depends on
the cell type and growth signal. These signals come from autocrine, paracrine or endocrine sources,
and reflect the metabolic state, DNA damage, physical and chemical stress, or oncogenic stimuli
(Massague 2004). Continually dividing intestinal crypt stem cells and target antigen-bound lymphocytes
are driven by different G1 network signals and developmental programs, and each carries a different risk

and mechanism of malignant transformation (reviewed in Massague 2004).
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Figure 4 G1 Phase Cell Cycle Controls (Cell Signalling Technology 2010)

Stem Cells

There is direct evidence for stem cells in the hematopoietic system, epidermis, intestinal epithelium, the
male germ line, the adult nervous system, and cardiac and skeletal muscle tissue (Gnecchi, Zhang et al.
2008; Jones and Fuller 2009; Liu and Rando 2011; Hsu and Fuchs 2012), and there is significant variation
in cell types and the molecular factors that maintain homeostasis within individual compartments
(Fuchs, Tumbar et al. 2004; Hsu and Fuchs 2012). The most extensively characterized stem cells are

embryonic (ESC), neural (NSC), and hematopoietic (HSC) stem cells (Ramalho-Santos, Yoon et al. 2002).
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It is presumed that a stem cell compartment exists for every type of tissue or organ in the mammalian
system. Stem cells are primarily characterized by the capacity for unlimited or prolonged periods of self-
renewal, and the ability to produce one (unipotent) or more (oligopotent) highly differentiated
descendants (Thomson, Itskovitz-Eldor et al. 1998; Watt, Hogan et al. 2000; Rando, Thomas A. 2006; Hsu
and Fuchs 2012). In 1998, James Thomson and colleagues isolated human embryonic stem cells from
blastocysts (Thomson, Itskovitz-Eldor et al. 1998), and these cells exceeded the Hayflick Limit by at least
a 10-fold factor (James Thomson, 2012 - personal communication). The main features of stem cells are
a cell cycle status of either prolonged arrest in G1 phase or actively cycling with expression of
telomerase; adherence to the extracellular matrix (ECM) via integrin, ADAM and bystin proteins ; active
JAK/STAT, TGF-1, and Notch signaling (Conboy, Conboy et al. 2003; Gouti and Gavalas 2008); a capacity
to sense growth hormone and thrombin; and a high resistance to stress, with up-regulated DNA repair
mechanisms, protein folding, ubiquitin system, and detoxification mechanisms, such as ABC transporters

(Bodnar, Ouellette et al. 1998; Ramalho-Santos, Yoon et al. 2002; reviewed in Jones and Fuller 2009).

Data from the work of Miguel Ramalho-Santos and Douglas Melton shows that a subset of
approximately 230 genes are commonly enriched in adult SCs, including 35 signaling proteins, 4 for DNA
repair, 13 regulating cell cycle, 8 protein folding chaperones, and 6 proteins for toxic stress response
(Ramalho-Santos, Yoon et al. 2002). These stem cell characteristics appear similar to those of yeast cells
under oxidative stress; up-regulation of chaperones, protein degradation genes, DNA repair, and
detoxifying enzymes (Ramalho-Santos, Yoon et al. 2002). The primary function appears to be the
maintenance of tissue homeostasis, and provide replacement for the turnover of cells that are lost
during normal function, or as the need arises for wound repair (Watt, Hogan et al. 2000; Coussens and
Werb 2002; Jones and Wagers 2008; Walter, Wright et al. 2010); although they appear to lose their

effectiveness at maintaining homeostasis with increasing age and the disruption or disorder of this
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homeostasis may serve to promote the transition from health to tumorigenesis (Rando, Thomas A.

2006; Wicha, Liu et al. 2006; Rosen and Jordan 2009; Bates 2010).
Stem Cell Niche

The stem cell niche is a specialized microenvironment that is required to maintain stem cell self-
renewal. These fixed anatomical compartments provide a tightly controlled mechanism to regulate and
direct stem cell division, the rate of proliferation, progeny differentiation, protection from parasites and
viral infections, and against proliferative exhaustion (Zhang, Niu et al. 2003; Jones and Wagers 2008;
Levi and Morrison 2008; Kiefer 2011; Neal, Richardson et al. 2011; Hsu and Fuchs 2012). Key
components of the stem cell niche include cell-cell and cell-matrix contacts, and these help control
environmental pH, oxygen tension, and soluble growth factor gradients (Engler, Sen et al. 2006; Discher,

Mooney et al. 2009).
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Figure 5 - The stem cell microenvironment. Cell fate and maintenance of the stem cell pool are controlled
through a combination of soluble and matrix-bound factors, intercellular contact, cell-matrix adhesions,
and chemical gradients (Discher, Mooney et al. 2009)

Maintenance of the stem cell nature within the niche is directed by the stromal cells; cell cycling,
division, and population count are all tightly regulated (reviewed in Spradling, Drummond-Barbosa et al.
2001; reviewed in Drummond-Barbosa 2008; Levi and Morrison 2008; reviewed in Morrison and

Spradling 2008; reviewed in Voog and Jones 2010). Clinical studies have long proven that stem cells can
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be transplanted, and depleted niches can be replenished - bone-marrow transplants have been
successfully conducted for over 40 years since the pioneering work of George Mathe and E Donnall
Thomas (Buckner, Epstein et al. 1970). In vitro studies have shown that neural cells can be derived from
skin precursors (Toma, Akhavan et al. 2001), skeletal muscle satellite cells can replenish hematopoietic
niches (Jackson, Mi et al. 1999), and bone marrow stem cells can produce lung tissue (Kotton, Ma et al.
2001; Krause, Theise et al. 2001). Stromal cells vary among different niche types, but commonly include
fibroblasts, fat cells, mesenchymal stem cells and their progeny, for example the hematopoietic system

niche also includes chondrocytes and osteoblasts (Minguell, Erices et al. 2001).

Inomata and colleagues showed that lack of maintenance of the melanocyte stem cell pool by niche
stromal cells may result in premature differentiation of stem cells, leading to irreversible graying of hair,
an indicator in the aging phenotype (Inomata, Aoto et al. 2009). The display that age-dependent
alterations in gene expression in hematopoietic stem cells results in a decline in immune function
further bolsters the concept that maintenance of the stem cell niche is a significant component in aging

(Rossi, Bryder et al. 2005).

Extracellular Matrix

In addition to stem cells and their progenitor cells (also called transit amplifying cells), the stem cell
niche includes the ECM which provides a structural scaffolding for cells, endothelial vasculature for
providing nutrients and oxygen, macrophages and other immune cells to combat pathogens and remove
apoptotic cells, and the epithelial cells which organize into sheets of polarized cells (Bissell and Radisky
2001). Cells secrete a variety of proteins that form the extracellular matrix (Weinberg 2007). Individual
components of the ECM include collagens and glycoaminoglycans, proteoglycans, and glycoproteins (eg,

fibronectins, elastins, hyaluronic acid), and the mechanical and bioinductive properties of these
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scaffolds play an important role in cellular proliferation and migration, largely the result of collagen

fiber architecture and kinematics. (Romberger 1997; Labat-Robert 2004; Badylak 2007).

Figure 6 The Extracellular Matrix. Figure 7. A 3T3 (fibroblast) cell amid
The complex meshwork of collagen an ECM network of fibronectin fibers

fibers, glycoproteins, hyaluronan, (green). Integrin receptors on the cell
and proteoglycans, in which surface (orange, yellow) mediate the

fibroblasts (connective tissue cells) ~ Points of attachment to ECM
are embedded. (Nishida, Yasumoto  fibronectin. (Cukierman, Pankov et al.

et al. 1988) 2002)
Signaling factors, secreted or induced by stromal cells or the stem cells themselves, directs stem cell
fate through precise signaling pathways, though these pathways may differ for each tissue type (Jones
and Fuller 2009). Stem cell regeneration reiterates the process of embryonic organogenesis and
regulatory signal transduction networks, such as Notch, Wnt, TGF-B, and Hedgehog pathways (Carlson,
Hsu et al. 2008; Jones and Wagers 2008), though they appear to be maintained by different self-renewal
programs at different ages in response to changes in growth and repair demands (Levi and Morrison
2008). The Notch-1/Delta-1 and Wnt/B-catenin transduction pathways have been identified in a
number of stem cell types for maintaining non-differentiated status and initiating self-renewal, while the
mitotic spindle formation axis, oxygen tension, and other biochemical and biophysical forces influence
division type (symmetric or asymmetric), while cytokine gradients may serve as a guide for progenitor
cells to required location (Fuchs, Tumbar et al. 2004; Carlson, Hsu et al. 2008; Tottey, Johnson et al.

2011). Experimental control of Notch signaling in both young and old muscle tissue dramatically affects

muscle regeneration (Conboy, Conboy et al. 2003), and the balance between Notch activation and TGF-3
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activation changes with age, resulting in under-expression of Notch/Delta signaling and the subsequent

replicative senescence of satellite cells in the muscle tissue of aging mice. (Conboy, Conboy et al. 2003).

Hayflick factors Figure 8 The classical view of cancer as the body's
protection from aging; or conversely, senescence
Telomere INK4a DNA . . .
shortening  de-repression damage (cellular aging) as protection from developing cancer

(from Collado, Blasco et al. 2007)
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Cellular senescence

Cellular senescence is typically marked by permanent exit from the cell cycle, morphological
enlargement, alterations in chromatin structure, expression of senescence-associated B-galactosidase
activity, and profound changes to the transcriptome (Campisi, Judith 2005). Cellular senescence has
been shown to occur in response to telomere malfunction, DNA damage, or oncogenic activation and
oxidative stress (Kuilman, Michaloglou et al. 2010; Kosar, Bartkova et al. 2011). While some cells
acquire a spindle shape, a flat cell phenotype is commonly seen and cells may become large, flat, and
multinucleated, or display an increased number of vacuoles, depending on the cell type and the
activator of senescence (Kuilman, Michaloglou et al. 2010). A classic characteristic of senescence is the
activation of the p53 and p16INK4a—RB pathways, and a rise in levels of DDR elements and cell cycle
inhibitor proteins (Campisi, Judith 2005; Kuilman, Michaloglou et al. 2010; Coppe, Rodier et al. 2011;
Kosar, Bartkova et al. 2011). A DNA damage response (DDR) induces a temporary arrest of the cell cycle,

a pause in the replication process and provides time for repair. If the DNA damage exceeds a threshold,
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cells undergo either apoptosis or proceed into a senescent state (Massague 2004; Kuilman, Michaloglou
et al. 2010). The gene product p53 is a core pathway mediator of early senescence signals resulting
from oncogene activation, telomere dysfunction, DNA damage, and increased levels of reactive oxygen
species (ROS) (Massague 2004; Campisi, Judith 2005). The RB tumor suppressor network includes cyclin-
dependent kinase inhibtors such as p16INK4a, p27Kip1, and p21Cip1/WAF1, which serve as G1/S cell
cycle checkpoint regulators to inhibit E2F transcriptional proteins (Massague 2004). A punctate DNA
staining pattern has been observed for many years, senescence-associated heterochromatic foci (SAHF),
localized to methylated Lysine residues of histone H3, as well as proteins associated with specific
promoter regions of E2F cell cycle regulator proteins (Kuilman, Michaloglou et al. 2010; Kosar, Bartkova

etal. 2011).

The transcriptional changes seen in senescent cells include secretion of various cytokines, proteases and
growth factors, known as the senescence-associated secretory phenotype (SASP) (Coppé, Patil et al.
2008; Kosar, Bartkova et al. 2011). Expression of secreted factors, including various cytokines and
chemokines, insulin-like growth factor, insulin-like growth factor binding protein 3, and plasminogen
activator inhibitor 1, has been shown to be altered in senescent cells, and these changes effect changes
in immediate and distant neighbors (Campisi, Judith 2005; Jeyapalan and Sedivy 2008). Further,
alterations in proteolysis occur in senescent cells, such that short-lived proteins tend to degrade faster,
and long-lived proteins degrade slower (Okada, Annabelle A. and Dice 1984; Okada, Y. and Okada 2000;

Eden, Geva-Zatorsky et al. 2011).

The SASP and tumorigenesis

In several studies, senescent fibroblasts have been shown to increase the rate of proliferation and the
ability to alter epithelial differentiation, leading to tumorigenesis (Krtolica, Ana, Parrinello et al. 2001;

Krtolica, A. and Campisi 2003; Parrinello, Coppe et al. 2005; Coppé, Desprez et al. 2010). Analysis of the
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SASP reveals a number of cytokines and chemokines, such as IL-6 (in response to oncogene-induced
senescence, eg, BRAF) and IL-8 (in response to telomeric dysfunction) , indicating a strong similarity to
the inflammatory response, as seen in wound healing; the C/EBPb and NF-kB transcription factors
activate the C-Fos and Jun components of the inflammatory transcriptome (Cichowski and Hahn 2008;
Kuilman, Michaloglou et al. 2010). While senescence can limit expansion of early malignant cells
through cell cycle arrest, they can also promote cancer by stimulating the proliferation of incipient
tumor cells that reside in their microenvironment , and this is consistent with the notion that cancer is
"wound-healing gone awry" (Cichowski and Hahn 2008; Kuilman and Peeper 2009; Kuilman, Michaloglou

et al. 2010; Hanahan and Weinberg 2011; Martinez-Corral, Olmeda et al. 2012).

ROS

Reactive oxygen species (ROS), the natural by-products of oxidative energy metabolism and cellular
respiration, have long been proposed as a primary cause of cellular aging (Harman 1956; Drew and
Leeuwenburgh 2002; Hasty, Campisi et al. 2003). Oxidative stress in cells and tissues can occur during
pathophysiological developments, such as during chronic inflammatory states, prolonged allergic
reaction or during ischemic or toxic and hyperglycemic conditions (Bertram and Hass 2008). Given that
most tumors undergo a period of hypoxia, prior to angiogenesis, oxidative stresses can apparently
worsen the condition, through a positive-feedback system. Oxidative stress also puts cells at risk for
senescence or apoptosis, and the organism may be required to replace tissue cells, thereby reducing
overall resilience to external stress. Ultraviolet stress, DNA damage and ROS damage to specific
proteins and the proteosome, activate cell cycle control and DNA repair mechanisms; activation of
ATM/ATR, p53, p16™*, p21“"! and other proteins of the apoptosis and senescence pathways regulate
cyclins, cyclin-dependent kinases (CDKs), retinblastoma (pRb) and the transcription factor E2F
(Massague 2004). Cyclin-dependent kinases associate with different cyclins to regulate a cascade of

proteins to control transcription, differentiation, nutrient uptake and other functions by means of
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balancing both positive (growth, survival and mitogenic) and negative (apoptotic and cytostatic;
genotoxic, metabolic, oncogenic and oxidative stress) signals (Massague 2004). Cyclin D1 over-

expression occurs in 50% of breast cancers (Massague 2004).
Telomere function

For many years the classical view was that chromosomes simply came to an end with telomeric repeats
and a linear structure, a view which has changed dramatically in the last 15 years (Greider 1999). If the
classical view were accurate, the resulting DNA structure would resemble a double-strand chromosome
break in need of repair, and DNA polymerases and repair proteins would identify and recombine these
ends with other chromosomal ends; and this is exactly what is observed in various cancers, and also
accounts for the difference in chromosome number between humans and all other great ape species
(IJdo, Baldini et al. 1991; van Steensel, Smogorzewska et al. 1998; Griffith, Comeau et al. 1999; Sfeir,

Kosiyatrakul et al. 2009).

Telomeric DNA

f 5°§ !
Duplex DNA O O O O End-specific

binding proteins telomeric proteins
(e.g. Raplp, TRF1) (e.g. Oxytricha o/f)

Figure 9 The classical view of telomeres and chromosomal ends (Greider 1999)

The new paradigm of chromatin structure at the terminal ends suggests a complex of telomeric tandem
repeats of G-T rich nucleotide sequences (eg, TTAGGG) and associated proteins, approximately 10—15kb
long, which loop back and integrate into the DNA forming Displacement loops (D-loops) and telomere
loops (T-loops) with a 150-200 nucleotide- long, single-stranded overhang of GT-rich repeat sequences.
(Blackburn, E H and Szostak 1984; Harley, Vaziri et al. 1992; Blasco 2005). Two main protein complexes

are bound to telomeres, the telomere repeat binding factor 1 and 2 complexes, TRF1 and TRF2 which
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assist in the stabilization of the molecule, and structure of T- and D-loop conformations (Greider 1999;

Blasco 2005).

TRF1 complex TRF2 complex Telomerass

TERC
TANK ERCCH TERT
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DKCA

ATM {Ataia talangiectasia)

Figure 10 The modern paradigm of
telomeric structure. Terminal
telomeric chromatin/protein
complexes loop back and integrate
with DNA to form circular ends to
chromatin, and protect the 3'-
overhang from telomerase binding,
or initiating a DNA repair response
(Blasco 2005)
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Telomeres serve two major functions: 1) they provide stability from end-joining homologous
recombination, and 2) they allow for complete replication of the entire coding structure of DNA by DNA
polymerases (Blackburn, Elizabeth H. 1991; Blasco 2005). The position and conformation of the catalytic
unit of DNA polymerase, forces a loss of telomeric DNA in differentiated somatic cells with each passage
through the cell cycle (Olovnikov, A. M. 1973; Blackburn, Elizabeth H. 1991), and this has been suggested
as a mechanism for the molecular clock which explains the Hayflick Limit (Harley, Vaziri et al. 1992).
When a certain length is reached on one or more telomeres in a dividing cell, a cellular "crisis" occurs,
and a DNA damage response is initiated - cell cycle checkpoints and senescence pathways may be
activated, resulting in removal from the cell cycle - this can be temporary or permanent (Deng, Chan et

al. 2008; Fridman and Tainsky 2008; Sahin, Colla et al. 2011).
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Figure 11 - Relationship of telomere length
and the Hayflick Limit of cellular
senescence. Stem and germ line cells
possess active telomerase which
synthesizes telomeres after each passage
through the cell cycle. Somatic cells fail to
express active telomerase, and as such
telomere length decreases until a crisis
occurs and the cells enter replicative
senescence (the Hayflick Limit) or
telomerase is reactivated and the cells
become immortalized. (Harley, Vaziri et al.
1992)

In embryonic and adult stem cells, a rare enzyme complex, telomerase, serves to synthesize telomeres

and extend protection to chromosomal ends (Blackburn, EH 1990; Cohen, Graham et al. 2007).

Telomerase is an enzyme complex consisting of two core components, telomerase RNA component

(Terc), which serves as a template for synthesis of telomeric DNA, and the catalytic protein Telomerase

reverse transcriptase (Tert) and a third small nucleolar ribonucleoprotein, dyskerin (Cohen, Graham et

al. 2007). Active telomerase complexes appear as a 670 kDa homodimer; two 334 kDa protomers, each

consisting of an hTERT (127 kDa),a dyskerin (57 kDa) and a 150 kDa telomerase RNA (Cohen, Graham et

al. 2007).

Telomerase synthesizes telomeres to maintain length in non-differentiated cells, such as stem and germ

line cells (Blackburn, EH 1990; Harley, Vaziri et al. 1992). The reverse transcriptase (TeRT) recognizes the

3'-OH at the end of the G-strand overhang, and using the RNA molecule (TeRC) as a template, elongates

the telomere (Blasco 2005).

The rarity of telomerase has been proposed to be as few as 20 molecules per cell, and binding affinity

varies on the specific telomeric repeat sequence; for example, telomerase binds to the telomere more
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strongly if the reading frame sequence is TTAGGG rather than GGGTTA (Scott Cohen, 2012 - personal
communication). Further, telomerase transcription is thought to be switched off during cellular
differentiation, but is active in stem cells, both embryonic and adult, and cancer cells (Harley, Vaziri et

al. 1992; Blasco 2005).

Telomere shortening activates the DNA damage response signaling pathways, mediated by the ATM and
ATR kinases (d'Adda di Fagagna 2008; Sfeir, Kosiyatrakul et al. 2009). In functional telomeres, TRF2 and
Protection of Telomeres Protein 1 (POT1) blocks the activation of ATM signaling and the action of ATR
kinase, respectively (de Lange, Titia 2005; de Lange, T. 2010). Consequently, without active telomerase,
shortened telomeres initiate p53-mediated cellular growth arrest, senescence or apoptosis and drives

tissue atrophy and functional decline in high-turnover organs (Sahin, Colla et al. 2011).

In cells that are deficient in p53, persistent shortening of telomeres can result in a prolonged DNA
damage response, an extended G2 phase due to an ATM-mediated cyclin inhibition, and bypass mitosis;
a second S-phase duplication of the genome results in tetraploidy and a provides a plausible mechanism

toward the aneuploidy seen in cancer (Gisselsson, Jonson et al. 2001; Davoli, Denchi et al. 2010).

Functional Cdk1/CycB Figure 12 Dysfunctional telomeres may initiate a
telomeres &1 S GzmM Gl S G2 chronic DNA damage response, resulting in cyclin
: —— o : 'r ; disruption. Bypassing mitosis, these cells then re-enter
ool division B> 6\- © '3_5\“/5 2@ Diploid S-phase and become tetraploid, continuing the cycle
cycles 2® 8o j_/gnp :,/(_;_\:jl‘;)""s and developing more pronounced aneuploidy. (Davoli,
i

[cdt1 [ Geminin | [ cdtt [ Geminin | Denchi et al. 2010)
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Recently, an association was observed between paternal age and the telomere length of offspring across
multiple generations. In a longitudinal study, grandchildren of older paternal grandfathers (regardless
of their father's age) have longer telomeres, and passed elongated telomeres to the second generation,
suggesting that life extension in the population could be achieved through late-life paternal

reproduction (Eisenberg, Hayes et al. 2012).

Cancer

Cancer is an age-related genetic disease characterized by extensive disruption of cellular homeostasis,
affecting the genome, the proteome, and the metabolome (Lengauer, Kinzler et al. 1998; Massague
2004; Rajagopalan and Lengauer 2004; Diehn, Cho et al. 2009; Eden, Geva-Zatorsky et al. 2011; Hanahan
and Weinberg 2011; Boisvert, Ahmad et al. 2012). The risk of developing cancer increases with

chronological age (Fridman and Tainsky 2008; Howlader, Noone et al. 2012).

The lifetime risk of developing cancer increases with chronological age (Fridman and Tainsky 2008;
Howlader, Noone et al. 2012). According to the National Cancer Institute, over 40% of will be diagnosed
with cancer at some time during their lifetime, and over half of them will develop cancer between age

50 and 70 (Howlader, Noone et al. 2012).

It is estimated that 60 percent of newly diagnosed cancers and 70 percent of cancer deaths occur in
those over 65, equating to a 10-fold increase in the risk of acquiring cancer, and a 15-fold increase in the
risk of death (SEER 2010). Current pharmaceutical therapies for treating cancers are, generally,

ineffective in over 66% of patients (Bell 2012).

Cancers arise through a sequential acquisition of genetic mutations occurring in specific genes
(Rajagopalan and Lengauer 2004). Karyotype analysis of cancer cells typically shows extensive

chromosomal aberrations, loss of chromosomes, fusion of chromosomal arms, rearrangement and
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polyploidy (Knudson 2001; Weinberg 2007). Normal cells contain a full complement of 46
chromosomes, while cancer cells often contain from 60 to 90 chromosomes, and individual cells within

the tumor will differ in number (Rajagopalan and Lengauer 2004).

Genetic alterations in cancer fall into four major categories: subtle sequence changes, alterations in

chromosome number, chromosome translocations, and gene amplifications (Lengauer, Kinzler et al.

1998).
Initiation Promotion Progression
Carcinogen/UV tumor promoter/UV
i=imi=iois) o S L e - > me - - - —»> metastasis
irreversible genetic clonal expansion of outgrowth of malignant conversion
mutation in stem initiated cells within pre-malignant to invasive carcinoma
cell/progenitor cell generalized hyperplasia tumors = papillomas

Figure 13 - Three stages of cancer development. Cells exposed to UV light, carcinogenic environmental chemicals
and endogenous toxins, that continue through the cell cycle are subject to increased damage and DNA alteration,
which DNA synthesis can fix as a mutation, resulting in the initiation of tumorigenesis, the promotion of the tumor
growth, and progression to a malignant state that can invade distant tissue. (Rundhaug and Fischer 2010)

Changes to normal cellular mechanisms, termed the "hallmarks of cancer" by Hanahan and Weinberg,
include uncontrolled, sustained proliferation, evasion of growth suppressors, resistance to apoptosis,
replicative immortality, expression of angiogenic factors, and increased motility and ability to
metastasize (Hanahan and Weinberg 2000). Two important characteristics also include 'genomic
instability' and 'inflammation’, and there is debate within the medical and research community as to

whether these are causative, or a result (reviewed in Rajagopalan and Lengauer 2004; Hanahan and

Weinberg 2011).
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Cancer stem cell hypothesis

The cancer stem cell (CaSC) hypothesis is based on widespread observation of cellular and genomic
heterogeneity within tumors, and that the majority of tumor cells are rapidly proliferating cells or
postmitotic, terminally-differentiated cells, neither of which possess the capacity for self-renewal and
long-term sustainability (Quintana, Shackleton et al. 2008). The CaSC hypothesis proposes that the
growth of tumors is fueled by limited numbers of dedicated stem cells that are capable of self-renewal,
recapitulating normal developmental processes seen in rapidly proliferating epithelial tissue such as

bone marrow, intestine and skin (Clevers 2011).

Healthy stem cells are protected from mutagens and carcinogens by their replicative quiescence, high
expression of ATP-binding cassette (ABC) transporters (drug pumps), anti-apoptotic proteins and DNA
damage repair mechanisms, and these same characteristics are observed in cells that have been shown
to regenerate tumors via serial transplantation, suggesting an explanation for the failure of modern
chemo- and radiotherapy to successfully eliminate tumors, and prevent recurrence (Voog and Jones

2010; Clevers 2011).

It has long been suggested that permanent removal from the cell cycle, replicative senescence, is a
biological mechanism to prevent cancer, however in the last decade, as our understanding of stem cell
biology, tissue repair, and developmental cellular induction increases, it is becoming clear that in some
cases cellular senescence saves the organism from one particular tumorigenic initiation, only to cause
another in a neighboring cell. Cellular senescence is therefore a double-edged sword which can both

prevent, and promote cancer (Campisi, Judith 2005).

The tumor-suppressor mechanisms of the p53 network, and retinoblastoma (Rb) family proteins are two

primary cell cycle regulators for preventing the synthesis of damaged DNA, and cellular division. Two
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classic results of constitutive activation of these networks are the programmed cell death of apoptosis

and permanent removal from the cell cycle through cellular senescence.

ROS double-agent theory

Research into pharmaceutical therapies to combat cancer and old age have failed to deliver an
unequivocal clinical breakthrough. Attempts to treat age-related diseases with antioxidant supplements
have resulted in Americans having among the most expensive urine in the world; further, there is
evidence that supplemental antioxidants actually inhibit expression of superoxide dismutases and result
in an increase of ROS in the cell (reviewed in Gutteridge and Halliwell 2000). Nick Lane proposes a
"double-agent theory" drawing on flaws in three leading theories of ageing: he argues that a tradeoff
exists between oxidative stress as a critical redox signal that induces inflammatory responses such as
those orchestrated by NFkB toward infection, and oxidative stress as a cause of aging and age-related
disease (Lane 2003). The double-agent theory suggests that aging is a function of increased intracellular
oxidative stress, and that there is an increase in free-radical leakage through mitochondrial membranes
with the increase of chronological age. According to Lane, this continuous mitochondrial leakage
produces a persistent shift in gene expression leading to the chronic inflammation characteristic of old

age (Lane 2003).

Senescence and Cancer

The development and progression of many tumors results from the coordinated activity of stem cells
and neighboring fibroblasts and inflammatory cells and the loss of molecular fidelity (Romberger 1997;
Ohashi, Kiehart et al. 1999; Beacham and Cukierman 2005; Zigrino, Loffek et al. 2005; Hanahan and
Weinberg 2011). Modifications in ECM surrounding stem cells can occur as a result of senescent
fibroblasts in the stem cell microenvironment, and alterations in fibronectin expression and changes to

fibronectin properties alter stem cell signaling, affecting cellular communication, cell adhesion, and
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proteolysis (Romberger 1997; Beacham and Cukierman 2005; Zigrino, Loffek et al. 2005; Chondrogianni
and Gonos 2010; Boisvert, Ahmad et al. 2012). Changes in fibronectin properties alter maintenance of
the stem cell population, and signals directing differentiation, expression of growth factors, cytokines
and proteases, and has been shown to impact promotion, progression and metastasis (Romberger 1997;

Beacham and Cukierman 2005; Zigrino, Léffek et al. 2005).

epidermis

dermis
Vessel -

extravasation

Figure 14 Metastasis of epidermal tumors. The first barrier of tumor migration from the primary site is
the connective tissue of the ECM. Escaping it depends on adhesion, degradation, and migration. Protein
structural changes resulting from the SASP of fibroblasts plays a critical role in each step. Altered
fibronectin and over-expression of matrix-degrading proteases, are primary drivers of the process
(Romberger 1997; Beacham and Cukierman 2005; Zigrino, Léffek et al. 2005). Image from Zigrino et al,
2005 (Zigrino, Loffek et al. 2005).

Stem cell depletion through apoptosis versus senescence

The Cancer Stem Cell (CSC) hypothesis provides explanation for several clinically observed phenomena
in tumorigenesis and cancer treatment. CSCs are nearly identical to normal stem cells, in that they
possess the capability of self- renewal, resilience to radiological and chemical treatment, exist in a

prolonged state of quiescence, and are designed to migrate to and colonize in distant sites. The CSC
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hypothesis addresses what is commonly seen in the clinic: even when response to radiation or chemo-

therapy is encouragingly robust, we do not consider cancer "cured," as rare tumor cells are able to

survive cytotoxic treatment and recurrence is common in most cancers (Bonnet and Dick 1997; Dick

2008; Clevers 2011). The impact of senescent cells on the population of stem cells in an organ

microenvironment is best exemplified in the example of an intestinal stem cell population, found in the

base layers of the intestinal crypt.

"+4 position" model

___________ . Enterocyte Goblet Enteroendocrine
Cell Cell
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Figure 15 - Two models of Intestinal crypt stem cells.
(Top panel) The “+4 position” model assumes that that
the crypt base is exclusively populated by terminally
differentiated Paneth Cells and stem cells are located
just above the Paneth cells at the +4 position. This

model, suggests that enterocytes, goblet cells, and
enteroendocrine cells are derived from +4 cell progeny
that differentiate as they migrate out of the crypts onto
the villi, while Paneth cells differentiate as they migrate
down toward the crypt base (Barker, van de Wetering
et al. 2008; Barker, Ridgway et al. 2009).
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The epithelium of the human small intestine is replaced every 3-6 days throughout life, originating from
a stem cell niche located at the bottom of the intestinal crypt (Barker, van Es et al. 2007; Barker, van de
Wetering et al. 2008; Barker, Ridgway et al. 2009; Barker, Bartfeld et al. 2010). Intestinal stem cells
(ISCs) have been identified through unique expression of a G protein-coupled receptor, Lgr5 (Barker, van
Es et al. 2007; Haegebarth and Clevers 2009; Merlos-Sudrez, Barriga et al. 2011; Neal, Richardson et al.

2011). The path of their transient amplifying (TA) progeny, supports the 'stem cell zone' model
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proposed by Leblond. TA cells expand through several passages and migrate upwards through a
morphogen-like gradient of Wnt signals along the crypt wall. Also present is a gradient of EphB2, a
receptor tyrosine kinase member of the NMDA (glutamate receptor) signaling pathway (Merlos-Suarez,
Barriga et al. 2011). As TA cells approach the intestinal lumen, they undergo cell cycle arrest and
achieve terminal differentiation (Barker, van de Wetering et al. 2008; Merlos-Suarez, Barriga et al.

2011).

Lgr5 Structure Lgr5-GFP+ve CBC Cells BrdU-labeled CBC Cells

Liicing -righ rephats

RN
———
naacelular

Figure 16 The G-protein-coupled receptor (GPCR) Lgr5. The structure of the Leucine-rich GPCR (left). Confocal
image of Lgr5-GFP+ Crypt-Base-Columnar (CBC) cells at the base of an intestinal crypts, interspersed between
Paneth cells (middle). The right panel shows a 24-hour label-retention of BrdU-stained Lgr5™° CBC cells, indicating
that all are actively cycling (Barker, van de Wetering et al. 2008).

Fibronectin

Among the components of the SASP are metallomatrix proteases, which increase the number of
proteolytic fragments of matrix macromolecules (Labat-Robert 2004). Fibronectin fragments have been
shown to increase tissue degradation, recruitment of inflammatory cells and tumor progression (Labat-
Robert 2004). Cell-matrix interactions are critically important in tissue homeostasis (Labat-Robert

2004).
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In the 1980s De Petro and Barlati showed that fibronectin fragments bind with G-protein-coupled
receptors (GPCRs) in tumor patient plasma cryoprecipitate, can transduce extracellular stimuli to
intracellular signals and effect transformation of chicken embryo fibroblasts infected with Rous sarcoma
virus (De Petro, Barlati et al. 1981; Labat-Robert 2004) (Armstrong and Armstrong 2000; Short, Boyer et

al. 2000; Kroeze, Sheffler et al. 2003; Labat-Robert 2004; Barker, van de Wetering et al. 2008).

Proteins of the ECM connect cell membranes, and provide a tensile conduit through the membrane,
across the cytoplasm, and into the nucleus, providing a signal transduction channel seemingly for the
purpose of controlling transcription, cell motility mechanisms, and differentiation (Hynes 1999; Ohashi,
Kiehart et al. 1999; Armstrong and Armstrong 2000; Attwell, Roskelley et al. 2000; Labat-Robert 2004;
Discher, Janmey et al. 2005; Engler, Sen et al. 2006; Discher, Mooney et al. 2009; Lodish, Flygare et al.
2010). As fibronectin is degraded in the ECM, cryptic fragments bind to cell-surface receptors and
initiate transcription; specifically, fibronectin fragmentation is a primary signal to the cell to produce

more fibronectin (Labat-Robert 2004).

Age
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Figure 17 Proteolytic fragmentation of fibronectin induces
amplification of fibronectin biosynthesis with age (Labat-Robert
2004).
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The specific properties of collagen and fibronectin change with age, and understanding how tissue cells
such as fibroblasts, myocytes, and neurons, sense matrix stiffness is beginning to emerge as quantitative
studies of adherent cells and relative elasticity can be measured (Discher, Janmey et al. 2005). It has
been observed that local matrix stiffness has a direct impact on cell state with regard to development,

differentiation, disease, and regeneration (Discher, Janmey et al. 2005).

The ECM mediates cell attachment, provides cell signals, binds growth factors (and limits their diffusion),
and in 2006, Adam Engler at the University of Pennsylvania showed that ECM matrix protein
characteristics (eg, rigidity/elasticity, atomic force) have a direct impact on lineage specification (Engler,
Sen et al. 2006; Discher, Mooney et al. 2009). Engler observed that marrow-derived mesenchymal stem
cells have the capacity to differentiate into discrete cell types, based on the impact of matrix forces
corresponding to the stiffness of matrix network for each tissue type (Engler, Sen et al. 2006). Using an
vitro gel system to allow for control of matrix elasticity, he showed conclusively that stem cell plasticity
is guided by physical surface tension: that is, soft matrix resulted in differentiation into neuronal tissue,
medium-tension matrix resulted in myoblasts, and high-tension resulted in osteoblasts (Engler, Sen et al.

2006; Discher, Mooney et al. 2009).
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An in vitro ystem controls crosslinking, and cell adhesion,
allowing for discrete changes of force exhibited by the ECM.
Standard phenotype, naive MSCs develop increasingly
branched, spindle, or polygonal shapes when grown on
matrices representing specific tissue types: Brain (0.1-1 kPa),
Muscle (8-17 kPa), or bone (25—40 kPa). Scale baris 20 mm.

24 hrs

96 hrs

Neuroaenic

www.manharaa.com




26

Summary

It is widely accepted that cellular senescence serves as an anti-cancer mechanism, the resulting
consequence of which is aging. Because tumorigenesis is the result of multiple genetic alterations or
genetic 'hits' it is reasonable to conclude that stem cells are among the few cell populations that would

survive long enough to accumulate these mutations.

Ostensibly, stem cells exhibit increased DNA repair mechanism activity and greater volume of ABC
transporters to extrude toxins, to protect against accumulation of damage, and when these mechanisms
fail they are occasionally removed through apoptosis or senescence when cellular injury or dysfunction

occurs (Knudson 2001; Lynch, Magnus D. 2006; Hanahan and Weinberg 2011).

In the case of mutation, both the deletion from the stem cell pool or the maintenance of dysfunctional
stem cells within the microenvironment present significant risks (Campisi, J., Kim et al. 2001). If a stem
cell is deleted via apoptosis, companion stem cells in the niche will receive a signal to replenish the
number, and at least one of those cells will divide symmetrically, restoring the niche number. The niche
now contains the full complement of stem cells, but the genomic diversity has been reduced, such that
the probability for occurrence of another mutation increases; If the stem cell enters a senescent state,
the overall niche function is strained, as fewer cells are left to maintain tissue homeostasis (Lynch, M. D.
2004; Lynch, Magnus D. 2006). The result is a choice - increased risk of cancer, or decreased stem cell
capacity and development of the aging phenotype, and cellular senescence plays a direct role in both

cases.

The discrete numbers of stem cells are tightly regulated through interaction with stromal cells and the
extracellular matrix (Jaenisch and Bird 2003; Boyer, Lee et al. 2005; Discher, Mooney et al. 2009). As
fibroblasts age, changes in their secretory phenotype affect the production and efficacy of proteins that

are involved in micro-environmental homeostasis. Changes in exerted mechanical force between
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extracellular matrix proteins and stem cells can directly affect cellular differentiation, and under stress,
fragments of the ECM proteins have been shown to promote cellular division, proliferation and

migration - a hallmark of cancer (Engler, Sen et al. 2006).

Applying de-cellularized ECM proteins to chronic wounds dramatically improve outcomes, and appears
to reset the cycle of cellular behavior in aging or damaged tissue environments. Conversely, cancer cells
have been shown to degrade the ECM of their own environment. While cell differentiation and tissue
regeneration have both been shown to be directly affected by ECM proteins, it would be interesting to

see the affect of ECM proteins on cancerous cells in vitro.
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Intrathymic thymopoiesis and the induction of T cell self-recognition

by Dave Comstock

for Dr. David Calhoun, Dr. Karen Hubbard, and Dr. Jerry Guyden, The City College of New York

The basis of the immune response is the ability of T cells to distinguish self from foreign antigens. Explain
how this process occurs in the thymus (i.e. explain T cell development and how mature cells are selected).
What cells of the thymus are involved? What is positive and negative selection? Explain the role of the T
cell antigen receptor in this process.
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Thymic lymphocytes (T cells) play a key role in cell-mediated immunity, possessing the ability to

recognize and eliminate cells infected with bacteria, viruses and some tumor cells by secreting a variety

of cytokines or by directly inducing cellular apoptosis in aberrant cells.

T cells arise from hematopoietic stem cells in the bone marrow that migrate to the thymus, and develop
through a coordinated process of interaction with thymic stromal cells in a highly specific, step-wise

developmental pathway.

Early in development a divergence of two distinct lineages occurs in thymocytes, based on T cell
receptor configuration, identifying them as either y:5 or a.:[3 TCR cells. Within the a:p lineage, cells
diverge further into subsets based on secretory factors and expression of CD4 or CD8 co-receptors,
these subsets include Tyl and Ty2, Ty9, Tyl7, Ty22 or Tres cells. Approximately 95% of T cells commit to
the Tyl or T,2 cell type (Itoh, Takahashi et al. 1999; Janeway Jr, Travers et al. 2004; Weaver, Harrington

et al. 2006; Dong and Martinez 2010).

The development pathway of T cell progenitors is delineated by a number of specific events including
somatic rearrangement of the T cell receptor (TCR) gene loci, "double-positive" (DP) expression of CD4
and CDS8, a process that restricts their 'identity' to binding either class-1 or class-Il of the major
histocompatiblity complex, and a selection process that regulates survival based on their affinity for self-

peptides (Janeway Jr, Travers et al. 2004).

This paper will focus on these canonical developmental stages and markers of early thymic progenitor

(ETP) from their entry into the thymus through their exit as a naive mature a.:3T cell.
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The thymus represents the primary site for T cell lymphopoiesis, or thymopoiesis, and provides a
microenvironment that coordinates a discrete set of factors that induce and support lineage

commitment, and the development, differentiation and survival of T cells (Miller 1961; 1992).

Jacques Miller and colleagues performed a number of post-natal thymectomy experiments in the late
1950s which resulted in repeated atrophy of the lymphoid system, increased susceptibility to foreign

infection, and failure to reject xenografts (Miller 1961).

T lymphoctyes, or T cells, are part of a group of white blood cells identified as those lymphocytes that
develop within the thymus and express a unique surface molecule complex known as a T cell receptor
(TCR); and it is these cells that perform a central role in cell-mediated immunity (Allison and Lanier 1987;

Miller 1992).

Research over the last several decades have shown that the thymus and the particular orientation and
organization of various stromal cell types orchestrate a specific interaction process with developing
thymocytes; secreting chemokines to induce proliferation, differentiation and protein expression, and
lead thymocytes through the cortex to the subcapsular region and then back to the medulla of the
thymic lobes before exiting the thymus and migrating to peripheral lymphoid organs (Miller 1992; 2002;

Janeway Jr, Travers et al. 2004; Miller 2011).

TCRs are disulfide-linked, membrane-anchored heterodimers consisting of highly variable alpha (a) and
beta (B) chains expressed as part of a complex with an invariant set of CD3 chain molecules; also
referred to as a.:3 T cells, a minority of T cells (~5%) express an alternate receptor formed by variable y

and 6 chains, and these are known as y3:T cells (Janeway Jr, Travers et al. 2004).

The individual alpha and beta chains that form the TCR contain a Variable (V), Joining, and Constant (C)

region, while the B-chain contains an additional Diversity (D) region. Each chain of the TCR is formed
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individually through a rearrangement of the genetic loci of the TCR genes which are located separately
on chromosomes 14 and 7, facilitated through a variety of transcription factors and proteins that enable
chromatin remodeling, recombination of DNA sequences, random insertion of nucleotides to those
rearranged gene segments, and ligation of the double-strand structure (Collins, M. K. L., Goodfellow et
al. 1984; Collins, M. K. L., Goodfellow et al. 1985; Dudley, Petrie et al. 1994; Livak, Petrie et al. 1995;
Nakajima, Menetski et al. 1995; Fehling, Hans J6rg and Von Boehmer 1997; Janeway Jr, Travers et al.

2004).

In the fully formed receptor, the constant region anchors the TCR to the cell membrane, including a
short cytoplasmic tail, while the extracellular Variable region contains a number of binding sites for

recognition of antigens bound to MHC complexes (San José, Sahuquillo et al. 1998).

The a: TCR heterodimer associates closely with a CD3 complex of peptide chains, and together they
are responsible for recognizing antigens bound to MHC molecules, and serve as a transducer for T cell

signaling (Miller 1992; San José, Sahuquillo et al. 1998).
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Figure 1 Rearrangement of the a/b chains to form the TCR. Association with CD3 complex allows the
structure to recognize antigens and transduce intracellular signals (Janeway Jr, Travers et al. 2004)
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The TCR/CD3 complex is constructed in the endoplasmic reticulum through an initial formation of
dimers of CD3e with either CD3y or CD39, and these dimers then aggregate with either TCRa. and TCRf
chains, before finally adding a CD3 homodimer, then transferred to the surface (San José, Sahuquillo et
al. 1998). Based on the expression of co-receptors CD4 or CD8, a.:3T cells are divided into two primary
types of cell: helper T cells (Ty) or cytotoxic (or cytolytic) T cells (Tc or CTLs) (reviewed in Janeway Jr,

Travers et al. 2004; Vallejo, Davila et al. 2004; Dong and Martinez 2010).

MHC structure and antigen presentation

Mature T cells in the periphery serve to recognize antigenic determinants, or epitopes, presented by
terminally differentiated or antigen presenting cells (APCs) such as macrophages or dendritic cells
(Boehmer 1988; Townsend and Bodmer 1989; Miller 1992; Janeway Jr, Travers et al. 2004; Vallejo,
Davila et al. 2004; Nicholson, Hahn et al. 2005). The human MHC, or HLA, contains approximately 21
highly polymorphic genes, and 5000 different alleles, located within the 6p21.3 region of the short arm
of human chromosome 6, that contribute immensely to the diversity within the immune system

(Horton, Wilming et al. 2004; Robinson, Mistry et al. 2011).
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Figure 2 MHC Structure. A groove on the upper surface of the MHC molecule binds peptides of 8-10
amino acids in length (Hewitt 2003; Janeway Jr, Travers et al. 2004). These peptide fragments are derived
from either endocytic vesicles (binding to MHC class Il) or fragments normally derived from the cell's
defective ribosomal translation products, cytosolic (binding to MHC class 1); in an infected cell, peptides
may be derived from bacterial or viral proteins (Boehmer 1988; Hewitt 2003; Janeway Jr, Travers et al.

2004: Nicholson, Hahn et gl. 2005).
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Intrathymic development

T cell development occurs in discrete steps in a compartmentalized fashion within specific
microenvironments of the thymus, through contact with different types of stromal cells in the cortex

and medulla (Fehling, Hans Jérg and Von Boehmer 1997; Janeway Jr, Travers et al. 2004).

Entering at the corticomedullary junction region of the thymus from the circulatory system, thymocytes
are drawn to the cortex, and induced to proliferate and undergo changes in genetic expression, through
a variety of cytokines and protein signaling pathways (reviewed in Fehling, Hans Jorg and Von Boehmer

1997; Wu 2006; Schlenner and Rodewald 2010).

As they migrate through specific regions of the thymus, they engage with thymic stromal cells such as

dendritic cells (DCs), cortical thymic epithelial cells (cTECs) and thymic nurse cells (TNCs) that provide
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other developmental cues as they develop, and reciprocally, the developing thymocytes provide a
"cross-talk" set of signals which is critical in the development of stromal cells (Hikosaka, Nitta et al.

2008; Love and Bhandoola 2011; Nitta, Ohigashi et al. 2011).

Distinct phases of thymocyte development are marked by changes in surface moleucle expression,
specifically: TCR beta-chain selection, expression of co-receptors CD4 and CD8, MHC class restriction,
TCR alpha chain determination, single-positive expression of either CD4 or CD8 co-receptor, and
negative selection against cells reactive to peripheral tissue antigen (Clevers, Alarcon et al. 1988;
Mombaerts, Clarke et al. 1992; Fehling, Hans J6rg and Von Boehmer 1997; Janeway Jr, Travers et al.

2004).

Double Negative Stages

Bone marrow-derived early thymic progenitor (ETP) cells, (surface marker phenotype SCA-1°, Thy-1°, c-Kit",
CD27" and CD44" CD4 CD8 CD25’) are drawn into the thymus by p-selectin glycoprotein ligand 1 (PSGL-1),
and enter thymic lobes by way of high endothelial venules (reviewed in Schmitt, de Pooter et al. 2004;

Yang, Jeremiah Bell et al. 2010; Koch and Radtke 2011).

Because these cells express neither CD4 nor CD8, they are termed double negative(DN), a designation
that has four subsequent stages, DN1 through DN4. More specific identification of these cells is
additionally based on differential surface expression of the CD25, CD44, and c-Kit molecules (Koch and
Radtke 2011).

Upon entering the thymus, DN1 thymocytes reside in the corticomedullary junction region, and may
continue proliferating for up to 10 days; these cells still retain the differentiation capacity to become
eitherT cells, B cells, macrophages, dendritic cells, monocytes, or NK cells (Wu, Vremec et al. 1995;

Schmitt, de Pooter et al. 2004; Yang, Jeremiah Bell et al. 2010; Koch and Radtke 2011).
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Notch-Delta signaling is a crucial signaling pathway is a prime determinant in B-cell (CD19+) or T cell
(CD25+44+) differentiation, driving proliferation and lineage commitment at the DN1 stage until B-chain
selection occurs or v:3 selection occurs (Schmitt, de Pooter et al. 2004; Rothenberg 2012).
Chemotactic cytokines, low molecular weight soluble proteins, serve to promote activation and
migration (lbelgaufts 2012). DN cells advance through gradients of chemokines CCL7, and CXCL4 and
CCL9 toward the cortex and subcapsular zone of the thymic lobule; while IL-7 concentrations promote
thymocyte proliferation (Misslitz, Pabst et al. 2004; Rossi, Corbel et al. 2005; Takahama 2006;
Rothenberg, Moore et al. 2008; Gossens, Naus et al. 2009; Carpenter and Bosselut 2010).

After DN1 cells migrate into the cortex they receive signals from cortical thymic epithelial cells (cTECs)
and fibroblasts which promote changes in surface molecule expression as they differentiate into DN2
cells (Fehling, Hans Jorg and Von Boehmer 1997; von Boehmer and Fehling 1997; Koch and Radtke

2011).

At the DN2 stage, cells that express the phenotype CD4-,CD8-, CD25+, CD44+, have lost the capacity to
differentiate into B-cells, however they maintain the potential to develop into NK-cells, dendritic cells,

and T-cells (Wu et al, 1996; Schmitt et al, 2004).

Cues from stromal cells alter transcription factor and protein expression in developing thymocytes,
particularly influencing random rearrangement of the TCR gene locus (Petrie, Livak et al. 1995; Misslitz,

Pabst et al. 2004; Webb, Kelly et al. 2004; Huseby, White et al. 2005; Gleimer and von Boehmer 2010).

Genes that encode the -chain of the TCR heterodimer undergo recombination of their variable (V),
diversity (D), and joining (J) segments from the germline DNA sequence (Allison and Lanier 1987; Petrie,

Livak et al. 1995).
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Figure 3 Double-negative stages of early thymocyte development. Progression through initial double-negative
phases is identified by specific expression of c-Kit, CD25, CD28 and CD44. Percentages give the approximate
proportion of each respective subset that survives the stage (adapted from Fehling, Hans J6rg and Von Boehmer
1997; Rothenberg 2012).

A variety of transcription factors participate in altering chromatin structure and provide an environment
permissive for survival, differentiation and rearrangement of the TCR —chain gene, include Runxl1,
CBFf, Bcl-11b, TCF-1 and GATA-3 (Ting, Olson et al. 1996; Schmitt, de Pooter et al. 2004; Rothenberg
2012).

Diversity of the a.:BTCR repertoire is generated through this transcription-mediated V(D)J recombination
(Boehmer 1988; Petrie, Livak et al. 1995; Fehling, Hans Jorg and Von Boehmer 1997; von Boehmer and
Fehling 1997).

A key set of proteins involved in this recombination are the Recombinant Activation Genes (RAG),
specifically variants RAG-1 and RAG-2, along with high mobility group (HMG) proteins, and another

enzyme critical to thymocyte development, terminal deoxynucleotidyl transferase (Tdt), a DNA
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polymerase that catalyses addition of nucleotides to a DNA molecule without a template (Collins, M K,
Tanigawa et al. 1985; Turka, Schatz et al. 1991; Mombaerts, lacomini et al. 1992; Petrie, Livak et al.
1995; Hernandez-Munain, McMurry et al. 1999; Mahajan, Gangi-Peterson et al. 1999; Janeway Jr,
Travers et al. 2004). Recombinant activating genes (RAG), RAG-1 and RAG-2 are up-regulated, along
with surface expression of CD25, the alpha chain of the IL-2 receptor molecule, which serves as a marker

that the cell has progressed to the DN2 stage (Rothenberg, Moore et al. 2008; Rothenberg 2012).

Figure 4 The action of RAG, Tdt and

& . DNA ligase proteins in somatic
= - o [P

recombination of TCR chain loci.

< EE
b The process of somatic recombination 1] 1]

is facilitated by Recombination Signal .
Sequences (RSS) that are 12 and 23bp nu h ﬂln

in length.

=

RAG proteins bind at these loci and
bind to each other, creating a hairpin Tl
DNA structure. DNA-dependent s
a protein kinases (Ku 70/80) bind to the

hairpins and the RSSs now serve as a El
/) : [1] [+ ]
3 point of random chromosomal
‘;? cleavage. nu 7] n
1]
o -
Exonucleases may eliminate
:@3: nucleotides or base pairs, while Tdt nn - v “n"'n
inserts random nucleotides into the
sequences. Finally, DNA ligase IV seals

the genetic recombination, adds to
the diversity of TCR epitope

— =
joint recoginition (Janeway Jr, Travers et al.

coding joint 20 04).

Differentiation between o:3 and y:5 T cells occurs during the DN2 to DN3 transition, and is primarily
based on expression of IL-7Ra (Koch and Radtke 2011). DN3 cells express the c-Kit' CD25CD44 CD4 CD§
phenotype, and having migrated to the thymic subcapsular zone, their commitment to the T cell

lineage is complete (Bhandoola, von Boehmer et al. 2007; Rajewsky and von Boehmer 2008; Kreslavsky,
Gleimer et al. 2010; Koch and Radtke 2011). At this point, having reached the subcapsular zone, they

turn around and head back toward the medulla (Koch and Radtke 2011).
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Factors that influence -chain rearrangement, also control upregulation of expression of the preTa
chain which serves as surrogate TCR a-chain, and these chains associate with CD3 complexes to form
the preTCR (Schmitt, de Pooter et al. 2004; Rothenberg and Taghon 2005; Gleimer and von Boehmer
2010; Kreslavsky, Gleimer et al. 2010; Yang, Jeremiah Bell et al. 2010; Koch and Radtke 2011;
Rothenberg 2012). The productive genetic recombination of the TCR B-chain locus is both critical and
sufficient to drive the formation of a preTCR in DN thymocytes; association of a TCR} with a preTa chain
and CD3 complex not only defines the DN4 stage, but drives the expression of CD4 and CD8 which
define the DP stage (Mombaerts, lacomini et al. 1992; Hoffman, Passoni et al. 1996). This is the
definition of "beta selection" (Hoffman, Passoni et al. 1996). Cells positively selected for 3-chain
formation continue to proliferate, and clonal deletion of the others occurs at a massive rate,
approximately 35-45% of the cells survive this process (Petrie, Livak et al. 1995; Hoffman, Passoni et al.

1996; Fehling, Hans Jorg and Von Boehmer 1997).

Double Positive Stage (c-Kit'CD25'CD44 preTCRB'CD4"CD8")

Successful rearrangement and prodution of a TCRB-chain initiates signals to begin expression of the CD4
and CD8 TCR co-receptors, and rearrangement of the TCRa-chain (Fehling, Hans Jorg, Krotkova et al.
1995; Petrie, Livak et al. 1995). These cells are phenotypically identifiedby the up-regulation and surface
expression of CD4 and CD8. Repeated rearrangements can rescue nonproductive Va—Ja joins. Initial
nonproductive rearrangements may result in subsequent rearrangements that bypass the
nonproductive VJ gene segments, possibly undergoing multiple rounds of rearrangement until a

functional o chain is generated or the cell dies.

Positive selection is the process by which developing a:BTCR expressing, DP thymocytes, when exposed

to MHC binding, display low to moderate affinity for self-peptide/MHC complexes as presented by cTECs
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or dendritic cells in the thymic cortex, and are then induced to continue differentiation and the

thymocytes mature into single-positive cells (Klein, Hinterberger et al. 2009).

In cells expressing a preTCRb, TCRa-chain recombination continues until positive selection for MHC
restriction occurs, or the cell undergoes apoptosis (Petrie, Livak et al. 1995; Fehling, Hans Jorg and Von
Boehmer 1997). Additionally, this stage of development results in a burst of proliferative activity

accounting for as much as 98% of cells in the thymus (Petrie, Livak et al. 1995).

Chun and Schatz et al (1991) analyzed intrathymic expression of RAG-1 and RAG-2 mRNA transcripts in
cortical thymocytes. Their experiments showed that DP TCR+ thymocytes continued RAG mRNA
expression, but neither RAG-1 nor RAG-2 transcripts were detectable in single positive thymocytes
(Turka, Schatz et al. 1991). The fact that RAG proteins are expressed in DP but not SP thymocytes is
consistent with the observation that the TCR a-chain locus has the ability to recombine after failed
receptor formation, a process that repeats for several days until a successful TCR is formed, or the cell
undergoes apoptosis through neglect (Turka, Schatz et al. 1991; Benoist and Mathis 1992; Krangel 2009;
Seitan, Hao et al. 2011). The positively selected DP cells then commit to either CD4 or CDS8 single-

positive then migrate(SP) expression (Koch and Radtke 2011).

Single Positive (TCR'CD4'CD8 or TCR*CD4 CD8")

Following MHC (positive) restriction in the cortex, single-positive (SP) cells migrate to the medulla where
they encounter medullary thymic epithelial cells (mTECs) (Anderson, Harman et al. 2000; Anderson and
Takahama 2012). A critical mechanism of development is a selection process by which T cells that
recognize and bind moderately or strongly to self-antigens are eliminated, known as negative selection

(Kyewski and Derbinski 2004).
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Negative selection is the apoptosis that is induced following a high affinity binding between the newly
formed TCR and self-antigen: MHC complexes presented by mTECs (Ohashi 2003; Koch and Radtke
2011). In order for this to occur, the thymic environment must present peptides from cellular processes
that occur in peripheral tissue, peptides referred to as tissue-specific antigens (TSA), and it is thought
recognition of these TSAs is what drives the negative selection process (Heino, Peterson et al. 1999;

Anderson, Venanzi et al. 2005; Derbinski, Gabler et al. 2005; Anderson and Su 2011).

Medullary thymic epithelial and dendritic cells have been shown to engage in a unique behavior known
as 'promiscuous gene expression' (Derbinski, Gabler et al. 2005). Promiscuous gene expression is
defined in regards to our knowledge of cell type-specific gene expression; that is, expression of genes
that are not known to play a role in the physiological phenotype of a given cell type (Derbinski, Gabler et
al. 2005; Tykocinski, Sinemus et al. 2010). For example, an mTEC expressed gene would be considered
tissue restricted (or tissue-specific) if it is commonly expressed in less than 10% of peripheral tissue;
using this operational definition, Derbinski et al (2005), showed that approximately 28% of the
overexpressed genes in mTECs (152 out of 545 genes) are peripheral tissue-specific. Moreover, they
found that promiscuous gene expression correlates with expression of CD80 (B7-1), which serves as a
ligand for CD28, a T cell co-stimulatory signaling molecule (Nunes, Truneh et al. 1996; Derbinski, Gabler

et al. 2005).

The Autoimmune Regulator (AIRE) gene has been shown to be a major regulator of promiscuous gene
expression, and is highly active in this small and select group of mTECs (Anderson, Venanzi et al. 2002;

Kyewski and Derbinski 2004; Derbinski, Gabler et al. 2005; Tykocinski, Sinemus et al. 2010).

The role of thymic selection and MHC class restriction has multiple benefits, it ensures that the majority
of T cells express properly formed TCRs with a vast diversity of epitope recognition, reduces the

probability of auto-reactive T cells in peripheral tissue, and maintains a population that is weakly
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reactive to the self-peptide:MHC complex , avoiding what Paul Erlich referred to as 'horror
autotoxicus'(Townsend and Bodmer 1989; Silverstein 2001; Housset and Malissen 2003; Huseby, White

et al. 2005; Klein, Hinterberger et al. 2009).

Having successfully traversed the architecture of the thymus, interacting with a variety of stromal cells
in the discrete compartments of the thymic architecture, these fully matured, naive T cells, are attracted
by sphingosine 1-phosphate (S1P) at HEVs, and exit the thymus to take their place in the periphery and

the secondary lymphoid organs.
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Intro

Humans DNA is subject to a variety of endogenous biochemical damage within the highly dynamic
environment of the cell: tautomeric conversions of nitrogenous bases, hydrolytic excision of bases, base
alkylation, deamination, depurination, pyrimidine dimerization, and single- and double-strand DNA

breaks (Lindahl, T. and Barnes 2000; Nelson, Lehninger et al. 2008; Milanowska, Krwawicz et al. 2011).

The adverse effects of DNA damage generally include disrupted DNA metabolism, cell-cycle arrest or cell
death, with long-term irreversible mutations contributing to ageing and oncogenesis (Hoeijmakers, Jan
H. J. 2001; Vousden and Ryan 2009; Reinhardt and Schumacher 2012). In response to the wide variety
and type of damage, numerous, distinct and highly conserved signaling and repair mechanisms have
evolved which minimize the consequences of toxic and mutagenic damage (Lindahl, T. and Barnes 2000;
Wood, Mitchell et al. 2001). DNA is protected from damage by a network of response pathways that
detect lesions through a variety of protein sensors (Lagerwerf, Vrouwe et al. 2011). This paper will focus
on the main DNA damage repair mechanisms, with a bias toward human systems; nucleotide- and base-

excision repair, homologous recombination, end joining, and mismatch repair.
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Figure 1 - DNA damage, repair mechanisms and consequences. Common DNA lesions are induced by three main
categories of agents: environmental agents, endogenous biochemical reaction byproducts, replication errors, and
random spontaneous chemical reactions. The long-term effects of DNA damage include permanent changes to the
primary structure of DNA (Hoeijmakers, Jan H. J. 2001).
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Types of DNA damage

Damage of DNA bases such as deamination, depurination or dimerization, can result from a variety of
sources: spontaneous biochemical reactions, errors in DNA synthesis, endogenous by-products of
aerobic respiration (reactive oxygen species), exogenous factors such as environmental chemicals found
in cigarette smoke or chemotherapeutics, ultraviolet (UV) light and ionizing radiation (De Bont and van
Larebeke 2004; Sancar, Lindsey-Boltz et al. 2004; Huffman, Sundheim et al. 2005; Nelson, Lehninger et
al. 2008).

DNA purine and pyrimidine bases undergo spontaneous changes in their structure. Base-pair mutations
arise through deamination from cytosine to uracil, methylcytosine to thymine, adenine to hypoxanthine,
or guanine to xanthine. Ultraviolet light can induce pyrimidine dimerization and the generation of a
cyclobutyl ring, or linkage between nucleotides forming kinks and bulges in the structure of DNA which
can arrest or prevent transcription and synthesis (Lu, Clark et al. 1983; De Bont and van Larebeke 2004;

Huffman, Sundheim et al. 2005; Nelson, Lehninger et al. 2008).

DNA synthesis can result in mismatched pairings that escape polymerase proof-reading mechanisms,
stalled replisomes can result in collapsed replication forks, and subsequent single- and double-strand

breaks (Nelson, Lehninger et al. 2008).

Alkylating agents such as dimethyl sulfate can methylate guanine to produce 0O°-methylguanine, which
prevent pairing with cytosine, while methylation of bases by S-adenosylmethionine or ethyl methane
sulfonate also prevent or alter base-pairing and transcription (Nelson, Lehninger et al. 2008; Lagerwerf,

Vrouwe et al. 2011).
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Figure 2 - DNA alkylations known to be repaired by AlkB type proteins (Mishina and He 2006).

Endogenous oxidative damage is the most common type seen in DNA and results from Fenton reactions
(Nelson, Lehninger et al. 2008). The partial reduction of molecular oxygen during metabolic reactions in
the presence of transition metals (iron and copper) yields superoxides (O,*), which are then converted
to hydrogen peroxides (H,0,), and hydroxyl radicals (HO®) referred to as ROS or reactive oxygen species
(De Bont and van Larebeke 2004). These products have the potential to cause the oxidation of
nitrogenous bases, and deterioration of DNA in the form of single- and double-strand DNA breaks (De
Bont and van Larebeke 2004; Cui, Kong et al. 2012). The mutagenic potential of oxidative damage is
seen in the series of reactions by which ROS oxidize the 5,6-double bond of 5-methylcytosine, then
through an intermediate product deaminates the cytosine to form thymine, facilitating a G:C -> T:A
transition which is known to block transcription and DNA replication (Lu, Clark et al. 1983; De Bont and
van Larebeke 2004). One of the most common oxidative DNA adducts is 8-hydroxydeoxyguanosine (8-

ox0-dG) (De Bont and van Larebeke 2004; Cui, Kong et al. 2012).
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Figure 3 - Common DNA oxidative adducts (De Bont and van Larebeke 2004).

Pathological generation of free radicals occurs through ionizing radiation, the 'oxidative burst' of
neutrophilic-driven inflammation, or via the cytochrome p450 system for metabolism of drugs (Lindahl,
T. and Barnes 2000; Wood, Mitchell et al. 2001; Nelson, Lehninger et al. 2008; Jackson and Bartek 2009;

Milanowska, Krwawicz et al. 2011).

Because of the Chargaff base-pairing specificity and the anti-parallel structure of DNA, each strand can
serve as a template for replication or repair of errors during the cell cycle (Nelson, Lehninger et al.
2008). This redundancy allows for excision repair of damaged or erroneous DNA by replacing individual
bases or a series of nucleotides to restore the integrity of the opposite strand (Lindahl, Tomas, Karran et

al. 1997; Lindahl, T. and Barnes 2000; Wood, Mitchell et al. 2001).

Direct repair

Two human proteins directly reverse base-adduct damage in DNA: the a-ketoglutarate- and Fe(ll)-
dependent dioxygenase ABH2 and ABH3, of the AlkB protein family, and 0°-alkylguanine-DNA
alkyltransferase (AGT) (Milanowska, Krwawicz et al. 2011). AGT possesses a helix-turn-helix motif, and
participates in direct repair of O°-alkylguanine lesions in DNA; the proposed mechanism suggesting that
at the C-terminal, the helix swivels about the proceeding loop to bind within the major groove of DNA,
which exposes an active-site cysteine, the substrate nucleoside "flips" out and away from the main DNA
molecule, and an irreversible transfer of the alkyl lesion occurs (Tano, Shiota et al. 1990; Duncan,

Trewick et al. 2002; Kaina, Christmann et al. 2007).
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DNA mismatch repair (MMR) corrects replication errors (mismatches and small insertions and
deletions) that escape the proofreading activity of DNA polymerase, resulting in the formation of
structural bulges, kinks, or loops (Hoeijmakers, Jan H. J. 2001). In Escherichia coli, MMR is initiated by
MutS, MutL, and MutH, while in humans, there are several known MutS homologues (Milanowska,

Krwawicz et al. 2011).

The E. coli MMR pathway has been extensively studied and shown to utilize a MutS-MutL complex to
identify the mismatch and a MutH protein to make a strand incision at the nearest hemi-methylated
adenine within a palindromic GATC sequence, followed by the action of DNA helicase Il and an
exonuclease (eg, RecJ or Exol, ExoVIl, or ExoX) to create a gap, which is then filled by DNA pol Il and
finished by DNA ligase; after repair, the GATC sites are then methylated by Dam (lyer, Pluciennik et al.
2005; Modrich 2006; Nelson, Lehninger et al. 2008). A key feature of this mechanism is the ability to

work in a bidirectional manner (lyer, Pluciennik et al. 2005).
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Figure 4 - Model for E. coli methyl-directed mismatch repair (lyer, Pluciennik et al. 2005)

Human cells also support mismatch repair, but the human MutS and MutL homologs (MSH and MLH,
respectively) are heterodimers rather than homodimers, and while E. coli repair is directed by
methylation patterns, it is suggested that human MMR discriminates daughter from template strand
using a non-methylation strand-specific nick in the DNA backbone but the mechanism is unknown
(Modrich 2006). MSHa has been observed to support repair of all eight base-base mismatch types,

including C:C, and insertion/deletion mispairs of up to approximately 10nt in length (lyer, Pluciennik et
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al. 2005). Defects in MMR are associated with genome-wide instability, a predisposition to certain types

of cancer, and resistance to certain chemotherapeutic agents (Kanehisa, Goto et al. 2012).

Base excision repair

Base excision repair (BER) is one of the major pathways for removing simple lesions encountered in
DNA, specifically, nitrogenous base damage, insertion or loss (Parsons, Dianova et al. 2005). BER
requires coordination between a number of repair and accessory proteins (Parsons, Dianova et al.

2005).

The BER process can be summarized as follows: an individual DNA glycosylase recognizes and removes a
specific damaged DNA base creating an abasic site, an apurinic/apyriminic endonuclease (APE) then
makes an incision adjacent to the abasic site; a phosphodiesterase removes the remaining phosphate-
ribose complex at the DNA termini, and a DNA polymerase fills the resulting gap, then finally the strand
is sealed by a DNA ligase (Lindahl, Tomas, Karran et al. 1997; Hoeijmakers, Jan H. J. 2001; Moon, Garcia-
Diaz et al. 2007; Dalhus, Laerdahl et al. 2009). In some cases, DNA polymerases possess both
polymerization and lyase capabilities, eliminating the need for a phosphodiesterase in the pathway

(Yamtich and Sweasy 2010).

DNA glycosylases are a family of enzymes involved catalyzing the first step of the base excision repair
process; creating an apurinic apyrimidinic site (AP) through a mechanism that "flips" the damaged base
out of the double helix, then cleaves the N-glycosidic bond (reviewed in Dalhus, Laerdahl et al. 2009).
Individual DNA glycosylases typically bend or distort DNA to an angle between 30° and 70°, flattening
the minor groove of B-type DNA, which facilitates the excision of a damaged base by rotating the
nucleotide around the phosphodiester bonds (Dalhus, Laerdahl et al. 2009). Further, DNA glycosylases
have extremely tight-fitting substrate recognition pockets that accommodate the damaged bases while

blocking normal bases (Moon, Garcia-Diaz et al. 2007; Dalhus, Laerdahl et al. 2009).

APE1 is a human class Il endonuclease that creates a nick in the phosphate-ribose backbone adjacent to
an AP site. Across organisms, there are several types of AP endonucleases, classified base on incision
dynamics: AP endonucleases class | and Il cut the DNA backbone at the phosphate groups 5” to the
abasic site leaving a 5"-phosphate and a 3°-OH and termini (Myles and Sancar 1989; Lindahl, Tomas
1993; Marenstein, Wilson lii et al. 2004).
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DNA polymerase (3 (Pol B) is a small enzyme, approximately 39kDa (335 amino acids), capable of

synthesizing DNA in a template-directed manner, using the free 3'-OH as a primer, binding preferentially

to small gaps of 2-6 nucleotides (Yamtich and Sweasy 2010).

After APE1 makes a backbone incision, it recruits PolB to the site, then dissociates from the abasic site

(Sokhansanj, Rodrigue et al. 2002; Lagerwerf, Vrouwe et al. 2011). Pol 3 binds to the lesion and uses the

undamaged strand as a template for resynthesizing the sequence, and then recruits a DNA ligase

I11/XRCC1 heterodimer complex to reform the phosphodiester bond and repair the DNA backbone

(Myles and Sancar 1989; Parsons, Dianova et al. 2005; Nelson, Lehninger et al. 2008). Most damaged

bases are repaired by this single-nucleotide patch pathway, but there is an alternative pathway in which

the PolB is replaced by Pol Delta, which displaces a flap consisting of nucleotide residues, and

synthesizes a longer patch sequence (Matsumoto and Kim 1995; Kim, Biade et al. 1998). The flap is

recognized and and cleaved by the flap endonuclease FEN1, and the strand is ligated by DNA Ligase 1

(Kim, Biade et al. 1998).
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Nucleotide excision repair (NER) is characterized by specific proteins that recognize the damage, cleave
the DNA strand on each side of the lesion, and excise a fragment of nucleotides in which the lesion
exists; DNA polymerase and DNA ligase then restore the strand sequence and phosphopentose

backbone to its initial state (Huffman, Sundheim et al. 2005).

NER recognizes a wide array of DNA lesions, and is the primary mechanism for repairing DNA lesions
such as pyrimidine dimers, intrastrand cross-links and bulky adducts that form large helical distortions
(Myles and Sancar 1989; Hoeijmakers, Jan H. J. 2001). Most of these lesions occur through exogenous
sources, such as UV radiation , or exposure to aflatoxin, benzopyrene and other chemotherapeutic
agents such as cisplatin (Lindahl, Tomas and Wood 1999). These distortions can disrupt both DNA
synthesis and RNA transcription (Lindahl, Tomas and Wood 1999; Hoeijmakers, Jan H. J. 2001; Huffman,
Sundheim et al. 2005).

NER in E. coli is among the most extensively studied systems, and while the complexity of NER is greater
in eukaryotes, similar principles operate in bacterial models (Hoeijmakers, J.H.J., van Duin et al. 1986;
Kanehisa and Goto 2000; Huffman, Sundheim et al. 2005; Hanawalt 2007). Xeroderma pigmentosa is a
human genetic repair disorder resulting from mutations in one of seven genes: XPA, XPB, XPC, XPD, XPE,
XPF, and XPG, that produces hypersensitivity to UV radiation, and a 1000-fold risk increase for skin
cancer (Hoeijmakers, Jan H. J. 2001; Kanehisa, Goto et al. 2012); Cockayne syndrome, typified by
premature ageing, dwarfism, and dysmyelination, results from mutations in either of the CSA or CSB
genes (Kanehisa and Goto 2000; Hoeijmakers, Jan H. J. 2001). Mammalian NER involves 9 major

proteins, named according to the disease associated with their deficiency(Kanehisa, Goto et al. 2012).

NER consists of two related subpathways known as global genomic repair (GG-NER) and transcription-
coupled NER (TC-NER), and although the pathways differ in damage recognition, many of the proteins

involved in the repair of damage are shared between them (Lindahl, Tomas and Wood 1999).

GG-NER is considered to be transcription-independent, removing lesions from non-transcribed regions
of genome in addition to non-transcribed strands of transcribed regions, while the repair of damage in
transcription-active genes, typically resulting from UV exposure, is known as transcription-coupled NER

(TC-NER)(Hoeijmakers, Jan H. J. 2001).
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Global Genome NER

After recognition of the damage by the XPC:HR23B
complex, XPA and Replicative protein A (RPA)
initiate formation of the multisubunit repair
complex - TFIIH creates a bubble, unwinding the
damaged section of DNA, XPG then hydrolyzes a
phosphodiester bond on the 3'- side of the lesion,
and an ERCC1:XPF complex cleaves the
phosphodiester bond on the 5'-side of the lesion,
generating a fragment 27 to 30nt in length
(Lindahl, Tomas, Karran et al. 1997, Lindahl, Tomas
and Wood 1999; Wood, Mitchell et al. 2001). The
cleavage sites correlate to the unwound DNA at
the junctions of single- and double-strand DNA
(Wood, Mitchell et al. 2001). After creation of a
gap in the nucleotide sequence, DNA polymerase ¢
(Pol €) synthesize the new base pairings, and DNA
ligase seals the phosphodiester bonds
(Hoeijmakers, Jan H. J. 2001; Nelson, Lehninger et
al. 2008). Damage recognition, incision of the DNA
strand on both sides of the lesion, and excision of
the damaged sequence, are followed by
polymerization and ligation to restore the DNA to

its original state .
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Figure 6 - Nucleotide Excision Repair. Global Genome (left)
and transcription-coupled (right) models. (Hoeijmakers, Jan H.
J.2001)

During active gene expression, DNA helix-distorting lesions can block transcription by stalling the RNA

polymerase Il (Pol Il) and preventing elongation (Araujo and Wood 1999; Svejstrup 2002; Lagerwerf,

Vrouwe et al. 2011) In response to stalled RNA pol ll, various repair proteins are recruited to the site,

including CSA, CSB, TFIIH, XPG and the XPF:ERCC1 complex elongation (Araujo and Wood 1999;

Svejstrup 2002; Lagerwerf, Vrouwe et al. 2011) . It is presumed that CSB uncouples the polymerase and

removes it from the lesion site, the TC-NER repair complex consisting of CSA, CSB, TFIIH, ERCC1:XPF,
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XPG, TFIIS then forms, and DNA pol 4 and/or € synthesizes the repair elongation (Aradjo and Wood
1999; Svejstrup 2002; Lagerwerf, Vrouwe et al. 2011).

Recombinational Repair

Eukaryotic chromosomes are subject to rounds of replication, segregation, condensation and
decondensation throughout the cell cycle, and different types of lesions are more likely to occur in
specific phases (Branzei and Foiani 2008). While BER and NER (both GG and TC), operate throughout the
cycle, MMR is primarily active during S-phase, correcting mismatches, insertions and deletions

generated during DNA synthesis (lyer, Pluciennik et al. 2005).

Simultaneous double-strand breaks (DSBs) of the phosphate backbone of the two complementary
strands are one of the most serious DNA lesions. Failure or incomplete repair may result in genetic
mutation, cell-cycle arrest, apoptosis or genetic instability leading to cancer (reviewed in Symington and
Gautier 2011). DSBs can form as a result of ionizing radiation through the induction of ROS, or free-
radical production by cytotoxic drugs such as doxorubicin or etoposide; actinomycin and cisplatin,
chemotherapeutics that induce DNA cross-links, can also generate DSBs (Ohnishi, Mori et al. 2009).
These drugs interfere with topoisomerases that, when covalently bound at the replication fork,

terminates leading strand synthesis and creates a DSB (Ohnishi, Mori et al. 2009).

Double-stranded breaks of DNA are known to be repaired by a number of pathways: homologous
recombination (HR), non-homologous end-joining (NHEJ), alternative NHEJ (alt-NHEJ), and single-strand
annealing (SSA) (Ciccia, A and Elledge 2010). Coincidentally, there are also four independent sensing
mechanisms for detecting DSBs: poly adenosine-ribose polymerase (PARP), Ku70/80, the MRN protein
complex (Mrell, Rad50 and Nbs1), and with auxiliary processing RPA (Ciccia, A and Elledge 2010).

NHEJ

The quickest response to a double strand break, comes from the Ku70/Ku80 heterodimer, which exhibits
a strong affinity for DNA, and forms a ring around DSBs within seconds, and recruits DNA protein kinase
to the site (Walker, Corpina et al. 2001; Ciccia, A and Elledge 2010). Once bound, it activates the DNA
protein kinase catalytic subunit (DNA-PKcs), and the recruitment of ARTEMIS which initiates NHEJ,

followed by ligation by the XRCC4/Ligase4 complex (Ciccia, A and Elledge 2010).
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Alternate NHEJ

Binding of DNA DSBs by PARP promotes alt-NHEJ by attracting the MRN complex, in competition with
Ku70/Ku80, to the DNA end-breaks (Ciccia, A and Elledge 2010). In response to DNA breaks, MRN
activates ATM which in turn phosphorylates CtIP in a BRCA-dependent manner (Chinnadurai 2006;
Ciccia, A and Elledge 2010). The XRCC1/Ligasel complex then repairs the phosphodiester bonds to

restore the chromosome (Ciccia, A and Elledge 2010).

Homologous Repair

When NHEJ fails, the combination of MRN, CtIP

and BRCA1 promotes deletion of nucleotides from

the 5' ends of the break, in a process called APA

resection (reviewed in Ciccia, A and Elledge 2010; o Y ¥ i @
Kousholt, Fugger et al. 2012). Replication protein
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BLI\/I/TOpOlIl complex, Gen1, or Mus81/EME1 Figure 7 - modified from (Hoeijmakers, Jan H. J. 2001).

complexes (Ciccia, A and Elledge 2010).

Interstrand Crosslink Repair
Breaks in DNA that occur as a result of stalled replisomes at a replication fork are particularly dangerous,

threatening mitotic catastrophe, complex chromosomal rearrangements, and cell death (Ciccia, A and

Elledge 2010). The interstrand crosslink repair pathway consists of 13 genes associated with Fanconi
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anemia, a genetic disease that predisposes the patient to cancer, and bone-marrow failure (Garcia-

Higuera, Taniguchi et al. 2001).

Summary

DNA repair pathways include base excision repair, nucleotide excision repair, DNA strand break repair,
direct reversal of DNA damage, and the bypass during replication of DNA lesions. These pathways often
involve similar, or the same, proteins and enzymes, with the mechanism by which particular damage is
recognized being a primary difference between them. Nuclear DNA repair proteins protect genomic
integrity of cells, and many systems have evolved over time, to address the specific damage occurring
through DNA synthesis, cellular metabolism and exposure to exogenous chemicals and radiation.
Defects in these repair mechanisms may result in aging or disease, cancer in particular, and may provide

insight to treatment and pharmaceutical targets.
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